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ABSTRACT

Substituted indenes can be synthesized via the Brønsted acid catalyzed cyclization of diaryl- and alkyl aryl-1,3-dienes. In this approach, treatment
of symmetric or unsymmetric diaryl- and alkyl aryl-1,3-dienes with a catalytic amount of trifluoromethanesulfonic acid gives a variety of indene
derivatives in good to excellent yields under mild conditions.

Indenes are important building blocks in organic1 and
organometallic chemistry2 and are present inmany biolog-
ically and pharmaceutically active compounds.3 Thus,
the development of syntheticmethods for indenes has been
a significant objective in organic synthesis. To date, a
variety of synthetic methods for formation of an indene
ring have been reported. These include the reduction or
dehydration of an indanone,4 the cyclization of phenylvi-
nyl derivatives or phenyl-substituted allyl alcohols,5 the

ring expansion of suitably substituted cyclopropenes,6 or
the Friedel�Crafts cyclization of tetraaryl substituted
1,3-butadienes using an excess of a Lewis acid (10 equiv).7

†Dedicated to Prof. YoungKeunChung on the occasion of his 60th birthday.
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Inaddition, anumberof transitionmetals, e.g., Pd,8Ni,9Pt,10

Co,11 Au,12 and Fe,13 have been used to synthesize indenes
via carboannulations of alkynes. However, the introduc-
tion of a wide range of different substituents into the indene
ring system often encountered difficulties, when multisub-
stituted indene derivatives were concerned, most especially
with regard to their yields and reaction conditions.
Recently, we reported a hybrid system of gold/Brønsted

acid relay catalysis for the intramolecular double hydro-
arylation and cyclization.14 Moreover, as part of a syn-
thetic project, we required a simple route to a number of
indene derivatives. In this regard, we envisioned that if 2,
3-diaryl-1,3-dienes 1were treatedwith a variety of transition-
metal catalysts or Brønsted acids, they would give indenes
(2 or 3) via cyclization.Herein, we describe an efficient and
selective synthesis of indene derivatives from symmetric or
unsymmetric diaryl- and alkyl aryl-1,3-dienes through
Brønsted acid catalyzed cyclization (Scheme 1).

First, a variety of functionalized symmetric 2,3-diaryl-
1,3-dienes were easily prepared through Pd-catalyzed

coupling reactions of vinyl halides mediated by indium.15

Unsymmetric diaryl- and alkyl aryl-1,3-dienes were ob-
tained from the Pd-catalyzed cross-coupling reactions of
vinyl bromides with vinyl pinacol borane.16

We initiated our investigation using 2,3-diphenyl-1,3-
butadiene 1a (Table 1). When 1a was treated with
Ph3PAuCl and AgOTf (5 mol % each), the indene 2a

wasobtained in15%yield (entry 1),while use ofPh3PAuCl
andAgSbF6 (5mol% each) gave 3a in 85% yield inDCM
at 25 �C after 30 min (entry 2). The more electrophilic Au
catalyst derived from(C6F5)3PAuCl andAgSbF6 (5mol%
each) accelerated the cyclization, producing 2a in 88%
yield (DCM, 25 �C, 5 min, entry 3). The Au-catalyzed
cyclization reaction needed a longer reaction time (4 h) in
toluene (entry 4). In addition, AuCl3 (5 mol %) in the
presence of AgSbF6 (15 mol %) gave a successful result
(82%) inDCM(entry 5).AgSbF6 (5mol%) alone failed to
catalyze the cyclization (entry 6).

To check the possibility of catalysis by a protic acid, we
attempted the cyclization in the presence of trifluoro-
methanesulfonic acid (TfOH, 5mol%),which gratifyingly
gave rise to 2a in 94% yield in DCM at 25 �C after 5 min
(entry 7). However, the reaction did not give satisfactory
results with protic acids such as HCl, H2SO4, and H3PO4

(entries 8�10).
To explore the scope of the present Brønsted acid cat-

alyzed cyclization with respect to symmetric 2,3- diaryl-
1,3-dienes 1, we carried out further reactions with TfOH
(5mol%) inDCM(Table 2).Varying the electron demand
of the substituents on the phenyl ring did not diminish
the efficiency of cyclization. Under the optimized reaction
conditions, treatment of 2,3-diaryl-1,3-butadienes 1b and

Scheme 1. Synthesis of Indenes via Intramolecular Cyclization Table 1. Optimization for Cyclization of 2,3-Diphenyl-1,3-bu-
tadiene

entry cat. (mol %) time (h) yield (%)

1 Ph3PAuCl (5)/AgOTf (5) 12 15 (75)a

2 Ph3PAuCl (5)/AgSbF6 (5) 0.5 85

3 (C6F5)3 PAuCl (5)/AgSbF6 (5) 0.08 88

4 (C6F5)3 PAuCl (5)/AgSbF6 (5) 4 84b

5 AuCl3 (5)/AgSbF6 (15) 0.5 85

6 AgSbF6 (5) 12 0

7 TfOH (5) 0.08 94

8 37% HCl (25) 12 0

9 96% H2SO4 (25) 20 21

10 85% H3PO4 (25) 20 0

aRecovery yield of 1a. bToluene was used as a solvent.
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1c having a 2- or 4-methyl group with catalytic TfOH
(5mol%) gave2band2c in88%and87%yields, respectively
(entries 1 and 2). When 2,3-di(3-tolyl)-1,3-butadiene 1d was
employed as the substrate, theoretically, there could be two
possible products from two different cyclization directions
of the corresponding diene, and thus, 3,5-dimethyl-2-(3-
methylphenyl)indene and 3,7-dimethyl-2-(3-methylphenyl)-
indene were obtained in 35% and 50% yields, respectively
(entry 3). The presence of a 4-methoxy group had little effect
on either the reaction rate (5 min) or the product yield (2e,
88%, entry 4). 2,3-Diaryl-1,3-butadiene 1f, having a chloride
group, gave the desired indene 2f in 80% yield (entry 5).
Moreover, cyclization proceeded counter-intuitively with
1,3-dienes having electron-deficient aryl rings. When 2,3-
di(4-trifluoromethylphenyl)-1,3-butadiene 1g was subjected
to the reaction conditions, the indene 2g was obtained in
85% yield (entry 6). 2,3-Di(4-ethoxycarbonylphenyl)-1,3-
butadiene 1h underwent the Au-catalyzed cyclization reac-
tion, producing 2h in 97% yield albeit with a longer reaction
time (30 min) in DCE at 70 �C (entry 7). The presence of
a methyl or phenyl group on the terminal sp2 carbon had
little effect on the product yield. When 3,4-diphenyl-2,4-
hexadiene 1i was subjected to the optimized conditions,
the desired indene (2i) was obtained in 95% yield (entry 8).
However, 1,2,3,4-tetraphenyl-1,3-butadiene 1j required
25 mol % TfOH and a longer reaction time (20 min)
(entry 9). Encouraged by these results, we carried out
the TfOH-catalyzed cyclization of a 2,3-diaryl-1,3-
butadiene having an acetyl group on the phenyl ring
and a methyl group on the terminal sp2 carbon, obtain-
ing 2k in 75% yield, albeit after a longer reaction time
(16 h) in DCE at 70 �C (entry 10). This result indicates
that the carbonyl group depressed reactivity.
With this newly developed protocol in hand, we subse-

quently examined a variety of unsymmetric 2,3-diaryl-1,3-
dienes in the Brønsted acid catalyzed cyclization (Table 3).
Treatment of the 1,3-butadiene 1l with a methyl and an
ethoxycarbonyl group on the phenyl ring with 5 mol %
TfOH selectively provided the desired indene 2l in 97%
yield in DCM at 0 �C after 10 min, thus greatly expanding
the scope of our synthetic method (entry 1). A phenyl ring
having an electron-donating group likewise selectively
participated in the cyclization. 2,3-Diaryl-1,3-pentadiene
1m, having a methyl and an acetyl group, efficiently
cyclized with 5 mol % TfOH to selectively afford 2m in
91% yield (entry 2). When a cyclization reaction was
carried out with 1n and 5 mol%TfOH, the desired indene
2nwas selectively obtained in 89%yield (entry 3).Wewere
pleased to find that 1,3-pentadiene 1o successfully engaged
in this cyclization (entry 4). Treatment of diaryl-1,3-buta-
dienes 1p and 1q having an amino group with 25 mol %
TfOH at 25 �C gave the desired indenes 2p and 2q in
excellent yields (entries 5 and 6). 1,3-Diene 1r possessing a
4-pyridyl and a 4-methoxyphenyl group was smoothly
cyclized to produce 2r in 90% yield with TfOH (1.3 equiv)
at 25 �C (entry 7). The present method was expanded to
1,3-butadiene 1s possessing a tert-butyl and a 4-methoxy-
phenyl group (entry 8). Surprisingly, no constitutional
isomer was formed in any reactions.

Table 2. TfOH-Catalyzed Cyclization of Symmetric 2,3-Diaryl-
1,3-dienesa

a 5 mol % TfOH was used. bRatio of 3,5-dimethyl-2-(3-
methylphenyl)indene and 3,7-dimethyl-2-(3-methylphenyl)indene. cRe-
action was carried out in dichloroethane at 70 �C for 30 min. dReaction
was carriedt out with 25mol%TfOH for 20min. eReaction was carried
out at 70 �C in dichloroethane for 16 h.
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Although the mechanism of the present reaction is not
fully established at the present stage, a possible reaction
pathway is shown in Scheme 2.Markovnikov addition of a
proton to a double bond having a nearby electron-donating

group on two phenyl rings of 1 selectively gives the more
stable benzylic 3�-carbocation A rather than B. Then,
cationic cyclization of A affords an arenium cation C.
Subsequent deprotonation of C produces the indene 2 to
release the proton catalyst back into the catalytic cycle.
Benzylic 3�-carbocation B is assumed to be unstable,
mainly due to the electron deficiency of the phenyl group,
and thus, indene 3 is not produced.

In conclusion, we have developed a selective synthetic
method of indenes via the Brønsted acid catalyzed cycliza-
tion of diaryl- and alkyl aryl-1,3-dienes. Treatment of
symmetric or unsymmetric diaryl- and alkyl aryl-1,3-
dienes with 5 mol % TfOH gave a variety of indenes in
DCM in good-to-excellent yields under very mild condi-
tions.Weanticipate that this transformationwill be of high
value in synthetic and medicinal chemistry.
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Table 3. TfOH-Catalyzed Cyclizationof Unsymmetric Diaryl-
and Alkyl Aryl-1,3-butadienesa

a 5 mol % TfOH was used. bReaction time: 30 min. cReaction was
carried out with 25 mol % TfOH at 25 �C. dReaction was carried out
with TfOH (1.3 equiv) at 25 �C.

Scheme 2. Plausible Mechanism for Cyclization of 2,3-Diaryl-
1,3-butadiene
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